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ADJOINT PROBLEMS OF MECHANICS

OF CONTINUOUS MEDIA IN GAS-LASER CUTTING OF METALS

UDC 621.373.826O. B. Kovalev, A. M. Orishich,

V. M. Fomin, and V. B. Shulyat’ev

A mathematical model of gas-laser cutting of metal plates in an inert gas is proposed. The formation
and flow of the liquid metal melt film at the cutting front is considered within the framework of incom-
pressible boundary-layer equations. Based on the resultant analytical solution, a local law of energy
conservation on the cutting surface is derived, which takes into account the melt-film thickness and
the temperature dependence of thermophysical parameters of the metal. The problem of the cutting
shape and depth is solved in the two-dimensional formulation. A comparison with experimental data
is made in terms of the cutting depth and maximum cutting velocity for carbon and alloy steel.

Introduction. Rapid development of laser methods of metal processing is caused by the high level of
technological parameters, such as accuracy, locality of action, and velocity and quality of processing. Most metals
exhibit good absorption of radiation from a focused laser beam. Absorption of laser radiation by metals is accom-
panied by various physicochemical processes, such as heating, melting, evaporation, oxidation, and removal of the
melt. In the radiation spot, a material may be rapidly heated, melt, and even evaporate. Laser energy is absorbed
by the surface layer of the metal and propagates due to heat conduction in the axial and radial directions. If the
power density of the incident radiation is small (less than 108 W/m2) and the absorption rate is small as compared
to heat removal, then the surface temperature in the radiation spot is lower than the melting point. For a high
power density (greater than 1010 W/m2), evaporation becomes a dominant mechanism of material removal. Note
that all processes are rather localized because of the small size of the radiation spot (about 10−4 m).

Gas-laser cutting (GLC) of metals is widely used in fabrication of machine elements. The possibility of using
GLC depends significantly on the quality of cutting (roughness, burrs, cutting-zone geometry, etc.). GLC includes
many interrelated physical processes and is performed by means of local melting of the metal and removal of the
melt by the gas flow. GLC is an economical process that does not require a high laser power, since the melting heat
for metals is much lower than the evaporation heat. The use of an oxidizing gas (air or oxygen) leads to chemical
reactions with additional heat release in the surface layer, which also allows reduction of the laser power. As the
laser beam moves along the surface of a metal plate, a cutting kerf is formed. At the cutting front subjected to
the action of the gas jet and radiation, the melted metal flows in the form of a liquid film. The cutting depth
and purity (roughness) depend on a large number of parameters, which are difficult to predict. For example, one
possible reason for the formation of burrs and ripple patterns on the cutting edges is the unstable nonstationary
motion of the liquid film.

With increasing requirements to the quality of articles produced by laser technologies, it becomes necessary
to describe more accurately the inherent physicochemical processes. Nevertheless, despite the large number of
papers in this field [1–8], there is no adequate description of the processes typical of GLC of metals.
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Fig. 1. Interaction of the laser beam and gas jet with the surface
of the metal plate and melt layer.

To describe a realistic GLC pattern, it is necessary to consider a number of adjoint problems of mechanics
of continuous media:

— exhaustion of a gas jet and its dynamic interaction with the melted metal are described by the gas-
dynamics equations or Navier–Stokes equations;

— heat propagation in the solid body and melting of the metal are described by the heat-conduction equations
and two-phase Stefan problem;

— thermal interaction of laser radiation with the surface, the formation of the metal melt, and its flow in
the form of a liquid film are described by the incompressible boundary-layer equations.

The solution of the above equations in the full-scale formulation seems to be rather problematic. Therefore,
in the approach proposed in the present paper, the generic formulation of the GLC problem is separated in terms
of physical processes into subproblems; each subproblem is solved analytically under certain assumptions.

Gas Jet. The scheme of interaction of the laser beam and gas jet with the surface of a metal plate is shown
in Fig. 1 (S is the normal shock). The coordinate system (x, z) is rigidly fitted to the beam axis. A jet of an
inert gas is injected parallel to the laser beam. The velocity, density, and pressure of the inert gas do not change
with time. The formulation and solution of the problem of interaction of a supersonic gas jet and a plate with a
cutting kerf is severely complicated by the presence of a channel-slotted jet flow with turbulent boundary layers
and a system of shock waves [4]. Therefore, we consider a simplified one-dimensional formulation of the problem,
where the nozzle-exit diameter is much larger than the cutting width. The gas-dynamic parameters of the jet are
constant in each cross section of the cutting kerf aligned perpendicular to the jet direction. If the pressure in the
gas holder P0 is known and the ambient pressure Pa is specified, then the gas parameters at the nozzle exit are
calculated by the following isentropic formulas [9]:

P1 = P0

(
1− kg − 1

kg + 1
λ2

1

)kg/(kg−1)

, ρ1 = ρ0

(
1− kg − 1

kg + 1
λ2

1

)1/(kg−1)

, T1 = T0

(
1− kg − 1

kg + 1
λ2

1

)
,

(1)

λ2
1 =

kg + 1
kg − 1

(
1−

(Pa

P0

)(kg−1)/kg
)
, V1 = λ1ac, ac =

√
2kg

kg + 1
RgT∗.

Here P1, ρ1, T1, and V1 are the gas pressure, density, temperature, and velocity at the nozzle exit, kg and Rg are
the ratio of specific heats and the gas constant, λ1 is the reduced velocity, acr is the critical velocity of sound, and
T∗ is the stagnation temperature.

In the case of supersonic exhaustion (λ1 > 1), a normal shock wave arises between the nozzle and the plate.
The parameters behind this shock are calculated by the formulas
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λ2 =
1
λ1
, P2 = P1

λ2
1 − (kg − 1)/(kg + 1)

1− λ2
1(kg − 1)/(kg + 1)

, ρ2 = ρ1λ
2
1, T2 =

P2

ρ2Rg
. (2)

In describing the gas motion in a slot, we assume that the pressure gradient dP/dξ is a constant quantity,
which can be evaluated from the Bernoulli equation k = −dP/dξ ≈ ∆P/L = 0.5ρ2V

2
2 /L (L is the thickness of the

metal plate and ξ is the coordinate fitted to the cut-front surface). Taking into account the continuity equation for
the gas ρVg = ρ2V2 = const, we obtain

P = P2 − 0.5ρ2V
2
2 ξ/L, Vg = V2(1 + 0.5ξ/L), ρ = ρ2/(1 + 0.5ξ/L), Tg = P/(ρRg). (3)

Thus, the gas pressure P , velocity Vg, density ρ, and temperature Tg in the slot are calculated using formulas
(1)–(3).

Laser Radiation. We consider radiation of a CO2 laser with a 10.6-µm wavelength. The intensity of the
laser beam is described by the Gaussian distribution I(r) = I0 exp (−2r2/ω2

0), where I0 = 2W/(πω2
0), r =

√
x2 + y2,

W is the laser power, and ω0 is the beam radius. Radiation absorption depends on the reflectance of the metal
surface. The description of radiation/metal interaction involves Fresnel’s equations from which it follows that the
reflectivity is related to the complex refractive index of workpiece N = nω + ikω (nω and kω are the refractive
index and the extinction index of the medium) and the angle of incidence of the beam γ and depends on radiation
polarization, which may be parallel (Rs) or perpendicular (Rp) to the plane of incidence [10]:

Rs =
∣∣∣cos γ − (N2 − sin2 γ)1/2

cos γ + (N2 − sin2 γ)1/2

∣∣∣2, Rp =
∣∣∣N2 cos γ − (N2 − sin2 γ)1/2

N2 cos γ + (N2 − sin2 γ)1/2

∣∣∣2.
In the case of circular polarization, where the direction of the vector of electric-field intensity changes periodically
from parallel to perpendicular, the absorption factor is calculated by the formula A(γ) = 1− 0.5(Rs +Rp).

Flow of a Liquid Film. The motion of the melt film is considered in the coordinate system (ξ, η) fitted
to the cutting-front surface z = zm(x) (Fig. 1) as follows:

ξ = (x+ ω0) cosα+ z sinα, η = (x+ ω0) sinα− z cosα; (4)

cosα = 1
/√

1 + (zm)′2x . (5)

Under GLC conditions, it is usually assumed that the thickness of the down-flowing film is much smaller
than the cutting width [4]. The action of mass forces on the liquid may be ignored, and the melt flow may be
described by incompressible boundary-layer equations [3, 11]

∂U

∂ξ
+
∂V

∂η
= 0; (6)

ρm

(∂U
∂t

+ U
∂U

∂ξ
+ V

∂U

∂η

)
= −dP

dξ
+ µm

∂2U

∂η2
; (7)

ρm

(∂E
∂t

+ U
∂E

∂ξ
+ V

∂E

∂η

)
= U

dP

dξ
+

∂

∂η

(
ρmæm

∂E

∂η

)
+ µm

(∂U
∂η

)2

. (8)

Here U and V are the velocity-vector components in the ξ and η directions, respectively, E = cmT (T is the
temperature), ρm, cm, and µm are the density, specific heat capacity, and viscosity of the liquid metal, and æm =
λm/(ρmcm) is the temperature diffusivity.

We set the boundary conditions for Eqs. (6)–(8). The moving boundary η = 0, where metal melting occurs,
moves along the normal to the cutting-front surface with a velocity Vn. The continuity conditions for velocity
components of the liquid

η = 0: U(ξ, 0) = Vc cosα, V (ξ, 0) = Vc sinα (9)

and the Stefan conditions

η = 0: λm
∂T

∂η
− λs

∂Ts
∂η

= ρmHmVn, T (ξ, 0) = Ts(ξ, 0) = Tm (10)

are satisfied at this boundary. Here λm and λs are the thermal conductivities of the melted and solid metal, Ts is
the temperature of the solid metal, Tm and Hm are the melting point and latent heat of the metal, Vc is the velocity
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of the plate motion relative to the laser beam or the cutting velocity, and Vn is the normal component of velocity
vector of the liquid–solid interface.

At the other moving boundary η = H(ξ, t) (H is the thickness of the liquid melt layer), which is the liquid–gas
interface, the condition that describes the dynamic interaction between the gas and the liquid

η = H(ξ, t): µm
∂U

∂η
= τ (11)

(τ is the tangential stress at the liquid–gas interface) and the condition of kinematic compatibility

η = H(ξ, t):
∂H

∂t
+ U

∂H

∂ξ
= V (12)

are satisfied. The following condition of interaction of laser radiation and the liquid surface (Fig. 1) is satisfied at
the boundary η = H(ξ, t):

q · n = λm∇T · n. (13)

Here n = (− sinα, cosα).
In the (x, z) coordinates, the radiation-flux direction q = (0, qz), where qz = (2A(γ)W/(πω2

0)) exp (−x2/ω2
0),

coincides with the Oz axis. According to Eqs. (4) and (5), we have q = (qξ, qη) = (−qz sinα, qz cosα). Taking into
account the assumption ∂T/∂ξ ≈ 0, from (13) we obtain

η = H(ξ, t): λm
∂T

∂η
=

2A(γ)W
πω2

0

cos (α− ϕ)
cosϕ

exp
(
−2(ξ cosα+H(ξ) sinα− ω0)2

ω2
0

)
. (14)

Here γ is the angle of incidence of the beam onto the liquid surface and A(γ) is the radiation-absorption factor, and

cosϕ = 1
/√

1 +H ′2ξ , γ = α− ϕ. (15)

Equations (6)–(15) describe the flow of a liquid film sustained by the force action of the gas. The equality
of tangential stresses is fulfilled at the liquid–gas interface. According to the boundary-layer theory [11], we have
τ =

√
µ∗gρ
∗
gV

3
g /L, where ρ∗g and µ∗g are the gas density and viscosity at a temperature equal to the film-surface

temperature. Nitrogen, which is considered as neutral in laser-cutting processes, was chosen as an assist gas [1].
Thermal Conductivity in Solids. It is known [4] that the scale of thermal conductivity of a material

in the direction perpendicular to the optical axis of the beam is small as compared to the longitudinal scale,
which is obviously valid for a thin plate. Since the velocity Vn of the phase-transition boundary is comparable in
order of magnitude with the cutting velocity Vc, the characteristic thickness of the heated layer of the material is
∆ = æm/Vn ≈ æm/Vc ≈ 10−4 m. Therefore, heat propagation across the plate may be ignored. In addition to
Eqs. (6)–(8), at each point ξ in the region η ∈ (−∞, 0), we consider the one-dimensional heat-conduction equation

cs(Ts)ρs(Ts)
(∂Ts
∂t

+ Vn
∂Ts
∂η

)
=

∂

∂η
λs(Ts)

∂Ts
∂η

,

(16)
η = 0: Ts = Tm, η = −∞: Ts = T0.

The thermophysical parameters of a material are temperature-dependent [12, 13]. As iron is heated from the normal
temperature to its melting point, its density decreases by 0.5% [12], its heat capacity increases by 37% [13], and
its thermal conductivity decreases by 45% with heating up to 1000 K and by another 10% with heating up to
1700 K [12]. At the phase-transition point, the thermophysical parameters also change: the iron density decreases
by 7%, its heat capacity increases by 7%, and its thermal conductivity decreases from 39 W/(m ·K) at 1400 K to
8–10 W/(m ·K) [13]. Taking into account the above information, we use the values of thermophysical parameters
listed in Table 1 and also the dependences of the parameters cs [J/(kg ·K)], ρs [kg/m3], and λs [W/(m ·K)] on the
temperature Ts [7, 13, 14]:

cs(Ts) = 477 + 0.233(Ts − T0), ρs(Ts) = 7900− 0.73(Ts − T0), λs(Ts) = 47− 0.024(Ts − T0).

For given constant values of the thermophysical parameters of the melt ρm, cm, µm, and æm, radiation
parameters A(γ), W , and ω0, pressure gradient in the gas k, and stress τ , Eqs. (6)–(16) yield the film thickness H(ξ),
the melting rate Vn, and the flow parameters U , V , and T . For the beam motion with a velocity Vc relative to
the stationary metal plate, the angle α depends on the cutting-front shape z = zm(x, t) (Fig. 1). The relationship
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TABLE 1

Material
Tm,
K

Hm,
kJ/kg

λ0
s,

W/(m ·K)
λm,

W/(m ·K)
c0s,

J/(kg ·K)
cm,

J/(kg ·K)
ρ0
s,

103 kg/m3
ρm,

103 kg/m3
nω kω Reference

Fe 1808 277 39.0 10.0 628 748 7.8 6.98 7.60 27.0 [15]
St. 304 1670 — — 31.5 707 810 7.9 6.90 6.02 — [7]
St. 304 1800 275 14.9 — 477 — 7.9 — 17.87 28.5 [6]
Fe 1809 272 78.2 — 456 — 7.87 — — — [8]
Fe 1810 276 40.0 9.0 700 — 7.8 — 4.20 12.6 [14, 15]

between the surface velocity Vn and the cutting velocity Vc is expressed by the equation of kinematic compatibility
of the cutting-surface points:

∂zm

∂t
− Vc

∂zm

∂x
= −Vn

√
1 +

(∂zm

∂x

)2

. (17)

Solution of Adjoint Problems. We assume that the action of laser radiation is continuous and the velocity
of the plate relative to the beam is constant. Then the position of the cutting surface and also the liquid flow and
temperature distribution in the solid may be assumed to be stationary. We obtain Vn = Vc sinα from Eq. (17)
in the stationary case. Ignoring convective terms in Eqs. (7) and (8), we write Eqs. (6)–(16) in the stationary
dimensionless form:

∂u

∂ξ′
+
∂v

∂η′
= 0, 0 6 η′ 6 h; (18)

∂2u

∂η′2
= −AB; (19)

∂2θ

∂η′2
= Pe v

∂θ

∂η′
+ CPr

(
ABu−

( ∂u
∂η′

)2)
; (20)

η′ = 0: u = cosα, v = sinα, θ = 1; (21)

η′ = h(ξ′):
∂u

∂η′
= A, v = 0, u

∂h

∂ξ′
= v; (22)

η′ = h(ξ′):
∂θ

∂η′
= ΩA(γ)

cos (α− ϕ)
cosϕ

exp
(
−2(ξ′ cosα+ h(ξ′) sinα− 1)2

)
; (23)

∂

∂η′

(
λ(θs)

∂θs
∂η′

)
− æPe sinαν(θs)

∂θs
∂η′

= 0, −∞ 6 η′ 6 0,
(24)

λ(θs) = λs(θs)/λ0
s, ν(θs) = cs(θs)ρs(θs)/(c0sρ

0
s);

η′ = 0: θs = 1; (25)

η′ = −∞: θs = 0,
∂θs
∂η′

= 0; (26)

η′ = 0:
∂θ

∂η′
− λ0

s

λm
λ(θs)

∂θs
∂η′

= Pe Sf sinα. (27)

Here ξ′ = ξ/ω0, η′ = η/ω0, h = H/ω0, u = U/Vc, v = V/Vc, θ = (T − T0)/(Tm − T0), θs = (Ts − T0)/(Tm − T0),
A = ω0τ/(µmVc), B = kω0/τ , C = V 2

c /(cm(Tm − T0)), æ = æm/æ
0
s, Pr = µm/(ρmæm) is the Prandtl number, Pe =

(Vcω0)/æm is the Peclet number, Sf = Hm/(cm(Tm − T0)) is the Stefan number, and Ω = 2W/(πω0λm(Tm − T0))
is the degree of the energy action of radiation. The parameters A and B characterize the dynamics of the liquid,
and the parameter C characterizes the effect of this dynamics on the temperature of the liquid.

Thus, the adjoint problems (18)–(27) admit integration with respect to the coordinate η′ at each point ξ′.
Integrating Eqs. (18) and (19), we obtain the distributions of the u and v components of the flow velocity
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u = cosα+A(η′ +B(hη′ − 0.5η′2)), (28)

v = sinα− 0.5AB
∂h

∂ξ′
η′2 (29)

and the relation

(ξ′ − ξ′0) sinα = (h− h0) cosα+A(h2 − h2
0)/2 +AB(h3 − h3

0)/3, (30)

where h0 is the film thickness in the beginning of the boundary layer (ξ′ = ξ′0).
Typical values of dimensionless parameters in the energy equation (20) are as follows: Pr = 10−2, Pe = 8,

A = 103, B = 20, and C = 10−8. The power of laser radiation is W = 600 W, and the beam radius is ω0 = 70 µm.
The estimates show that the effect of dynamics of the liquid on the changes in temperature across the melt layer is
negligible; we may ignore this effect and assume that C = 0 in Eq. (20). Then, from the first integral in Eq. (20),
we obtain the temperature-gradient distribution

∂θ

∂η′
= ΩPrA(γ)

cos (α− ϕ)
cosϕ

exp
(
− 2(ξ′ cosα+ h(ξ′) sinα− 1)2

+ Pe sinα
(
η′ − h− 1

6
AB(η′3 − h3)

cosα+A(1 +Bh)h

))
. (31)

At the same time, the first integral in Eqs. (24)–(26) determines the heat flux in the solid:

λ(θs)
∂θs
∂η′

= æPe sinα

1∫
0

ν(t) dt. (32)

Substituting the expressions for heat fluxes into the Stefan condition (27), we obtain the relation between the
angles α, ϕ, and γ and the liquid-layer thickness h:

ΩPrA(γ)
cos (α− ϕ)

cosϕ
exp

(
− 2(ξ′ cosα+ h(ξ′) sinα− 1)2

− Pe sinα
(
h− 1

6
ABh3

cosα+A(1 +Bh)h

))
− c0sρ

0
s

cmρm
Pe sinα

1∫
0

ν(t) dt = Pe Sf sinα,
(33)

γ = α− ϕ, cosϕ = 1
/√

1 + h′2ξ′ .

In the case of an infinitely small thickness of the liquid film (h ≈ 0), we have ϕ ≈ 0. From Eq. (33), in dimensional
variables, we obtain

Vn = 2WA(α) cosα exp
(
− 2x2

ω2
0

)/[
πω2

0

(
ρmHm + c0sρ

0
s(Tm − T0)

1∫
0

ν(t) dt

)]
. (34)

Calculating the values of h(ξ′) and α(ξ′) at each point ξ′ from Eqs. (30) and (33), we obtain the solution
of Eqs. (28)–(33). Figure 2 shows the dependences H(ξ) and α(ξ) for different values of the cutting velocity Vc.
The pressure in the gas holder is P0 = 0.5 MPa, the plate thickness is L = 0.5 mm, the radiation power is
W = 600 W, and the beam radius is ω0 = 70 µm. Figure 3 shows the distributions of the U and V components
of the liquid-flow velocity along the coordinate η at the lower boundary of the cutting kerf for ξ = L, where the
boundary-layer thickness is maximum. With increasing cutting velocity, the melt thickness and the flow-velocity
components increase. Figure 4 shows the temperature distribution near the metal melting boundary. As the cutting
velocity increases, the heating depth of the solid material decreases and becomes approximately equal to 100 µm
for Vc > 160 mm/sec.

Cutting-Front Surface. If we neglect the liquid thickness (according to Fig. 2a, it is several microns),
then substituting Vn from Eq. (34) into the equation of kinematic compatibility (17), we can calculate the shape of
the cutting surface z = zm(x). In the dimensionless form, Eq. (17) contains one parameter σ:

∂βm

∂t′
− ∂βm

∂x′
= −σA(α) exp (−x′2), (35)
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Fig. 2. Thickness of the boundary layer of the liquid H(ξ) (a) and the angle α(ξ) (b)
versus the cutting velocity Vc = 500 (1), 250 (2), 160 (3), 80 (4), and 20 mm/sec (5).

Fig. 3. Distribution of the liquid-velocity components U(L, η) (a) and V (L, η) (b)
over the cutting depth for Vc = 80 (1), 160 (2), 250 (3), and 500 mm/sec (4).

where x′ = x/ω0, t′ = tVc/ω0, βm = zm/ω0, cosα = 1
/√

1 + (β′m)2
x′ , and

σ =
2W

πω2
0Vc

(
ρmHm + ρ0

sc
0
s(Tm − T0)

1∫
0

ν(t) dt
) .

If the specific heat capacity and material density are independent of temperature (cs ≡ c0s and ρs ≡ ρ0
s), we

obtain

1∫
0

ν(t) dt = 1. Equation (35) with the initial condition βm(0, x′) = 0 is solved numerically by the pseudo-

transient method in the region x′ ∈ [−χ, χ], where χ = L/ω0. The calculated dependence of the maximum depth
of the cutting kerf χ on the dimensionless parameter σ and also experimental data are shown in Fig. 5.

Sheets of low-carbon (L = 1, 2, and 3 mm) and electrotechnical (L = 0.5 mm) steels were used in experiments.
The laser source was a flow-type CO2 laser with a self-filtered resonator. The distribution of intensity of the laser
beam is close to the Gaussian distribution. Cutting was performed by a beam with circular polarization. In cutting
low-carbon steel, the beam was focused by a lens made of zinc selenide with a focal distance of 190 mm. Cutting of
electrotechnical steel was performed using a two-lens objective optimized to reduce spherical aberration. Nitrogen
was used as an assist gas. The limiting cutting velocity was determined in the experiments, the sheet thickness,
radiation power, and pressure of the assist gas being varied. The main parameters of the process and the test results
are listed in Table 2.
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Fig. 4 Fig. 5

Fig. 4. Temperature distribution in the liquid-melt layer and in the solid for Vc = 20 (1), 160 (2),
250 (3), and 500 mm/sec (4).

Fig. 5. Maximum depth of the cutting kerf χ versus the parameter σ: points 1 and 2 refer to the
calculation and experiment, respectively.

TABLE 2

L, mm W , W P0, atm ω0, µm σ V max
c , mm/sec

0.5 337 10 60 43.5 134.0
0.5 427 10 60 44.0 167.0
0.5 517 10 60 44.4 200.0
1.0 1080 5 120 65.3 71.0
2.0 1080 5 120 107.0 43.4
3.0 1080 5 120 209.0 22.2

The analysis of the test results shows that the parameters χ and σ may be used to generalize the results of
studying GLC regimes. A comparison of experimental data and the calculated dependence χ(σ) (Fig. 5) reveals
their qualitative agreement, especially for moderately high values of the parameters χ and σ corresponding to low
values of L and W . However, a difference arises with increasing L and W . The calculated value of the limiting
cutting thickness L is greater than the experimental one, which may be caused by the following reasons.

1. A one-dimensional heat-conduction equation was solved in calculating heat losses, i.e., all radiation energy
was spent on heating the substance in the cutting direction. In experiments, there are also heat losses to the side
walls, perpendicular to the cutting kerf, and these losses should increase with increasing cutting thickness and
decreasing cutting velocity Vc.

2. Calculation of GLC processes depends on a large number of parameters whose values are unknown. For
example, insurmountable difficulties arise in the description of interaction of radiation and the melted metal surface.
In experiments with a narrow and deep cutting kerf, multiple reflection of radiation from the side walls and melt
surface occurs, and the shape of the latter is difficult to predict.

3. It is assumed in calculations that the material is removed as the melting point is reached; therefore, melt
overheating is ignored.

4. Material evaporation is ignored in calculations; however, according to [10], the energy spent on evaporation
and melting is comparable in magnitude.

Conclusions. Interaction of laser radiation and the material surface under conditions of GLC of the metal
is studied theoretically and experimentally. A law of energy conservation on the cutting surface is derived, which
takes into account the thickness of the liquid film of the melt. A numerical dependence is obtained, which is used
to choose the optimal cutting conditions and radiation parameters. It is shown that the temperature dependence
of thermophysical parameters of the metal should be taken into account.

The authors are grateful to V. I. Yakovlev for discussions and valuable comments on this work and also to
S. A. Konstantinov for participation in experiments and assistance in interpreting the results.

1021



REFERENCES

1. A. A. Vedenov and G. G. Gladush, Physical Processes in Laser Processing of Materials [in Russian],
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